STRICTLY CONFIDENTIAL

For Philips
Service Dealers only
Copyright

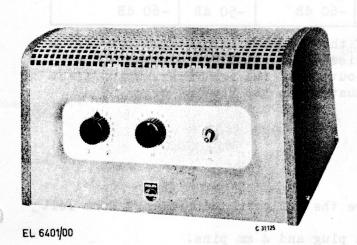
Published by
THE CENTRAL SERVICE DIVISION
N.V. Philips' Gloeilampenfabrieken

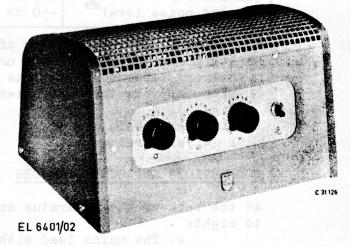
PHILIPS

SERVICE NOTES

With the Compliments of ...

RADIO WHOLESALERS LTD.


P.O. Box 527


INIVERCARGILL

for the amplifier

EL 6401

1956.

SPECIFICATION.

The EL 6401/00 has been designed for "public address" purposes. The amplifier has 2 inputs: 1 microphone and 1 radio pick-up input.

1 Common volume control. Mixing is not possible.

The EL 6401/02 = EL 6401/00, however, with 2 volume controls:

1 for the microphone and one for the radio pick-up channel.

Mixing is possible.

DIMENSIONS

WEIGHT

Length: 300 mm
Width: 225 mm
Height: 165 mm

Complete with valves 5.5 kg.

VALVES telliges edt lo leneg igori edt go

B1 : ECC40 B3 : EL81 B2 : ECC81 B4 : EL81

LIST OF DIAGRAMS

Fig.	1	:	Circuit diagram. EL 6401/00	Fig.	7:	Frequency response
Fig.	2	:	Top view (EL 6401/00)	0		curve (Q).
_			Circuit diagram)EL 6401/02	Fig.	-	Frequency response
_			Top view)EL 6401/02			curve (Q).
Fig.	5	:	R.M.A. filter.	Fig.	9:	Mains transformer.
Fig.	6	:	Measuring diagram	Fig.	10:	Output transformer.

ELECTRICAL DATA.

Mains voltage Mains frequency Power consumption Output voltage Load resistance Distorsion (at 1000 c/s and 18 W output)	110, 125, 145, 200, 220 or 245 V 50 - 100 Hz without signal 40 W (cos $\varphi = 0.9$) with maximum signal 78 W (cos $\varphi = 0.9$) 10, 50 and 100 V about 550 Ohm				
	EL 64	EL 6401/00		101/02	
	а	₽/R	a	Ø/R	
Input resistance Sensitivity Hum and noise level***	1 M 4.5 mV -50 dB	500.000 * 80 mV -60 dB	1 M 10 mV -50 dB	500.000 ** 200 mV -60 dB	

* Dependent on the position of the volume control.

*** For measuring the hum and noise a special R.C. network (R.M.A. filter) is connected to the output of the amplifier. This filter gives approx. the same attenuation as the hearing organ. See fig. 5).

RL = load resistor.

M = Valve voltmeter.

CONNECTIONS AND CONTROL KNOBS

At the back of the apparatus are the following connections from left to right:

a. The mains lead with plug and 4 mm pins.

b. The output connection executed with 4 terminal screws on a hard paper plate. From left to right 0, 10, 50 and 100 V (terminal 0 is earthed).

c. The earth terminal.

d. The socket Q (Pick-up/Radio) for a 19 mm plug with flat centre pin.

The right-hand contact (viewed from the back of the amplifier) is earthed.

e. The microphone input (), executed with a three-pole male socket.

Pin 1 is the "hot" side.

Pin 2 is earthed.

Pin 3 is earthed and also serves for earthing the screening braid of the connecting cable.

On the front panel of the amplifier are the following connections from left to right:

EL 6401 -3-

I. With the EL 6401/00

a. A volume control with a zero position in the middle. The volume of the microphone channel is adjusted to the left, that of the pick-up channel to the right.

b. A knob for adjusting the high tone filter. If this knob is turned entirely to the left, the high tones are cut off at 10.000 c/s about 14 dB.

If the knob is turned to the right, the reproduction characteristic is straight.

c. A mains switch. In the position "O" the apparatus is switched off.

II. With the EL 6401/02

- a. A volume control for the microphone channel.
- b. A volume control for the pick-up channel.
- c. Like Ib.
- d. Like Ic.

In the interior of the apparatus are various cams on the transformer in order to be able to solder the apparatus on the desired mains voltage. (see fig. 9).

Therefore the cap must be removed, as it is the case when replacing

Therefore the cap must be removed, as it is the case when replacing valves and/or a fuse.

CIRCUIT DESCRIPTION. (See fig. 1 and 3).

The microphone input "O " is connected to the control grid of valve B1' via the blocking capacitor C1 and resistor R4. The negative grid bias for this valve has been obtained by giving the leak resistor R3 a high value (1 MOhm).

The amplified microphone voltage is fed via C2 to the volume control R1.

I. With the EL 6401/00.

The pick-up/radio input is connected to the other side of R1. The centre tapping of the volume control is earthed. Mixing is not possible.

II. With the EL 6401/02

The pick-up/radio input is connected to the volume control R22. In order to avoid that when mixing, the microphone and pick-up/radio signal influence each other, the resistors R22 and R24 are inserted in series with the sliding contacts.

The signal derived from the potentiometer (s) is fed to the grid of B1 via the capacitor C3.

The signal amplified by B1 is led to the high tone control via C5. If R2 is turned in the maximum position, C2 will be connected in parallel to the potentiometer. C6 has a low impedance for the high frequencies with regard to the low and middle frequencies. The result is that these high frequencies are more attenuated than the low and middle frequencies, (ca. 14 dB at 10.000 c/s). See fig. 7. Then the signal is led to the phase inverter B2. The cathode of both triodes are interconnected. The grid of the lower triode is earthed. When the signal of the grid of the upper triode is increasing, the anode current increases and as a consequence of this also the voltage over the cathode resistor R10.

The result of this is that the grid of the lower triode becomes more negative with regard to the cathode. The anode current of the lower valve section decreases. The signals of the anodes of both triodes

are opposit in phase.

-4- EL 6401

By chosing the right of the anode resistors R11 and R12, and the grid leak resistors R14 and R15, the signals with a phase shift of 180° on the control grids of the output valves B3 and B4 are of equal value.

The control grids of B3 and B4 obtain their negative initial voltage across the resistors R14 and R15. This voltage is derived from the circuit S4-B5-R20. The cell B5 provides the rectification, R19 forms a fixed charge whereas C10 serves for smoothing.

Between the anodes of the output valves B3 and B4, a spark-gap has been applied which on delivery has been adjusted at 0.3 mm and is sealed with wax. This adjustment should not be changed.

For rectifying the supply voltage for the valves, a selenium rectifier (Gr1) is used in this apparatus.

CHECKING AND MEASUREMENTS

The volume control(s) is set on "0" (with the exception of the measurements of the output valves in full load, Vo = 100 V - 1000 c/s). The amplifier is charged at the terminals of 0 and 100 V with a resistor of about 550 0hm (10 W).

VOLTAGES OF THE SUPPLY PART

Point	+1	+2	+3	-4	
Direct voltage	+275-+295 ¥	+230-+250 ₹	+170-+190 V	-47.548.5	

MEASUREMENT

Valve Measurement	B1 (ECC40)	B2 (ECC81)	B3-B4 (EL81)	B3, B4 (EL81) Full load Vo=100V;1000Hz
Va' Va Vg2 -Vg' -Vg Vf	53-73 24-34 - 0.73-0.92 0 6.15-6.45	95-123 140-180 - -2.092.55 -2.092.55 6.15- 6.45	- 270- 290 267- 287 - -47.549.5 6.15- 6.45	230- 250 200- 220 - -46.548.5 6.1-6.4

The above values are extreme values. The measurement should fall within these limits.

If a possible fault in the amplifier cannot be found with the voltage tables, the amplifier should be measured stage by stage. For this check, a valve voltmeter e.g. GM 4132 or GM 6005 and a A.F. oscillator e.g. GM 2315 or GM 2307 are required.

DESCRIPTION OF THE MEASUREMENT. (See fig. 1 and 3).

A resistor of 550 0hm (10 W) is connected to the 100 V output terminal. The volume control "O" is turned to maximum. (With the EL 6401/02, the volume control "O" at minimum).

Turn the high tone control H entirely to the right.

Adjust the tone generator at 1000 c/s and

I. With the EL 6401/00 apply a voltage of 1.25 mV.

II. With the EL 6401/01 apply a voltage of 2.7 mV. to the microphone input. This corresponds to a voltage of 25 V across

EL 6401 -5-

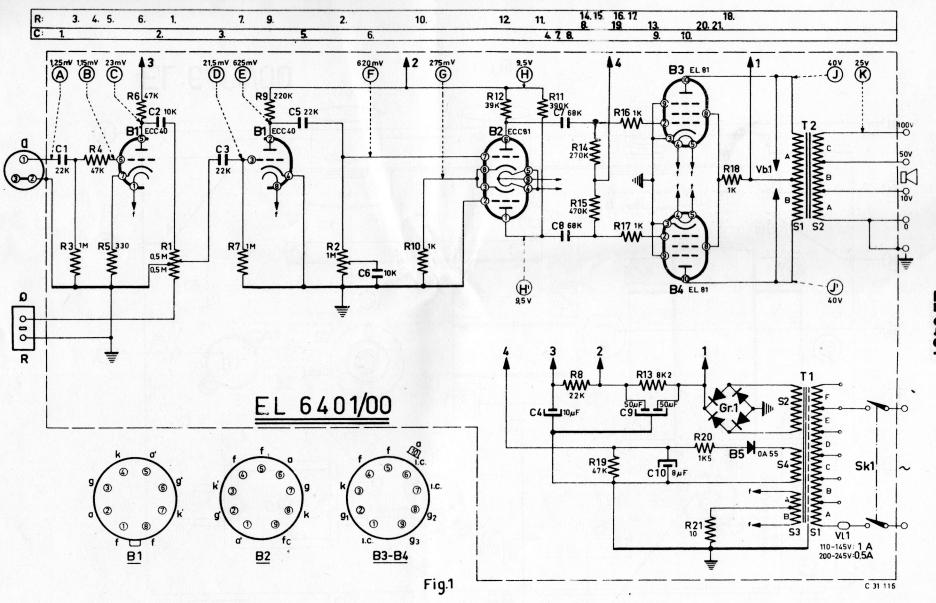
the load resistance. If this voltage is not measured across the output, measure the voltage consecutively on the points B, C, D, E, F, G, H, H', J, J', and K and localize the fault in this manner. A deviation of more than 20% indicates a fault in the respective stage.

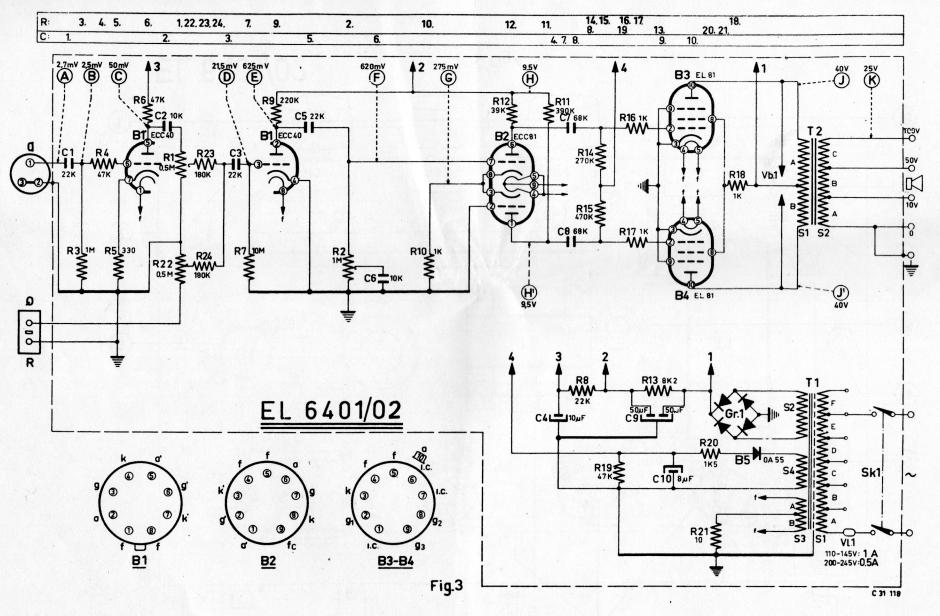
MEASURING THE FREQUENCY RESPONSE CURVES

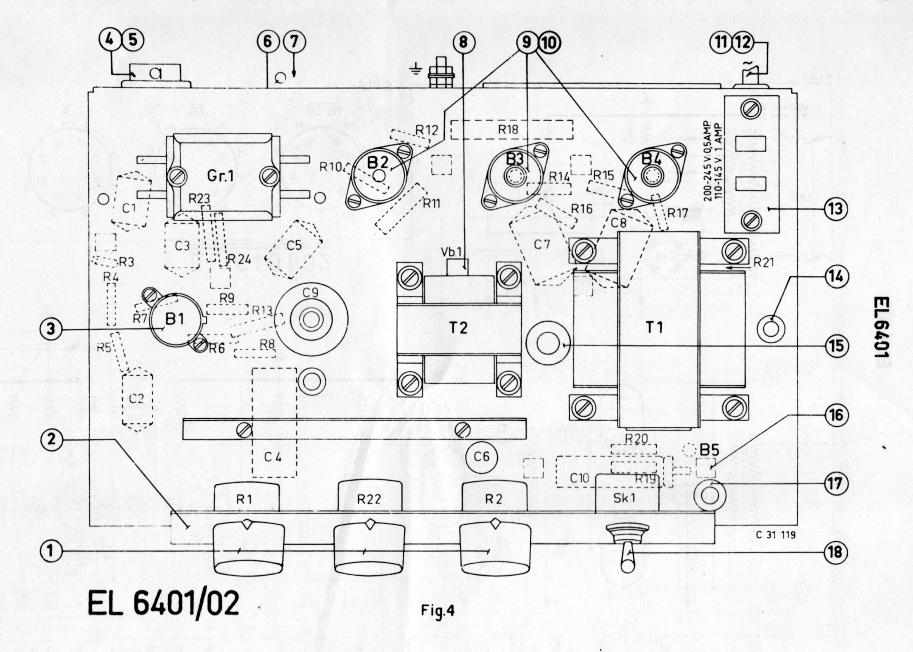
A resistor of approx. 550 Ohm (10 W) is connected to the loudspeaker terminals (100 V). The volume control of the channel to be measured is adjusted at maximum (the other volume control is set to minimum). The set of measuring apparatus is the same as mentioned under "voltages at the valves". For the measuring diagram, see fig. 6.

IMPORTANT.

When measuring via both channels a resistor of 12.000 Ohm must be inserted connected in series with the measuring cord.


Fig. 7 indicates the frequency response curve of the radio/pick-up channel.


Fig. 8 indicates the frequency response curve of the microphone channel.


LOUDSPEAKER ADAPTION

The secondary winding of the output transformer is executed according to the 100 V system. The output has to be converted to 100-50 and 10 V. The loudspeakers should be connected in parallel.

-			/00	/02
T1 . T2.		V3 616 75.0 V3 621 34.0	x	x x
R1	2x 0,5 MOhm 0,5 MOhm	49 501 43.0 A9 999 16/GL500K	x	-
R2	o, y monin	A9 999 15/E1M	_ x	- x
R3	1 MOhm	A9 999 16/GEIM A9 999 00/1M	x	x
R4 R5	47000 Ohm 330 Ohm	A9 999 00/47K A9 999 00/330E	x	x x
R6 R7	47000 Ohm 1 MOhm	A9 999 00/47K A9 999 00/1M	x x	x -
R8	10 MOhm 22000 Ohm	A9 999 00/10M A9 999 00/22K	- x	x x
R9 R10	0,22 MOhm 1000 Ohm	A9 999 00/220K A9 999 00/1K	x x	x ×
R11 R12	0,39 MOhm 39000 Ohm	A9 999 00/390K A9 999 00/39K	x	x x
R13 R14	-8200 Ohm	A9 999 00/8K2	X	х
R15	0,47 MOhm	A9 999 00/270K A9 999 00/470K	x	x x
R16 R17	1000 Ohm 1000 Ohm	A9 999 00/1K A9 999 00/1K	x	x x
R18	1000 Ohm 47000 Ohm	48 767 05/1K A9 999 01/47K	x x	x x
R20 R21	1500 Ohm 10 Ohm	A9 999 01/1K5 A9 999 00/10E	x x	x x
R22 R23	0,5 MOhm 0,18 MOhm	A9 999 15/EIM A9 999 00/180K	-	x x
R24	0,18 MOhm	A9 999 00/180K	-	х
C1 C2	22000 · pF 10000 pF	A9 999 06/22K A9 999 06/10K	x x	x x
C3 C4	22000 pF 10 uF	A9 999 06/22K A9 999 11/P8	x x	x x
05 06	22000 pF 10000 pF	A9 999 06/22K A9 999 06/10K	x	x x
C 7	68000 pF	A9 999 06/68K	х	x.
C 9	50+50 u F	A9 999 06/68K A9 999 12/L50+50	x	x
C1 0	8 uF	A9 999 11/L8	X	x
V11	0,5 A (220-245 V) 1 A (110-145 V)	08 142 29.0 08 142 30.0	x	x.
Gr1		V3 696 60.0	x	x
1.0				

