

TECHNICAL INFORMATION

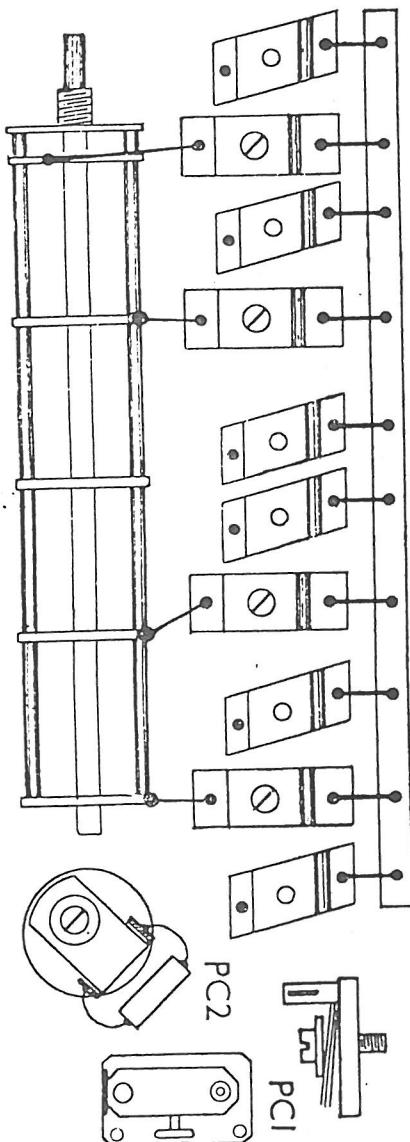
BULLETIN No. 103.

(TYPE)

Note → NEW SERIES TYPE "6 AW" RECEIVER.
uses 6.3-volt valve
← ~~or~~ ~~but is not~~ only
6 AW

July 1935

RECEIVER


COLLIER & BEALE LTD.

WELLINGTON

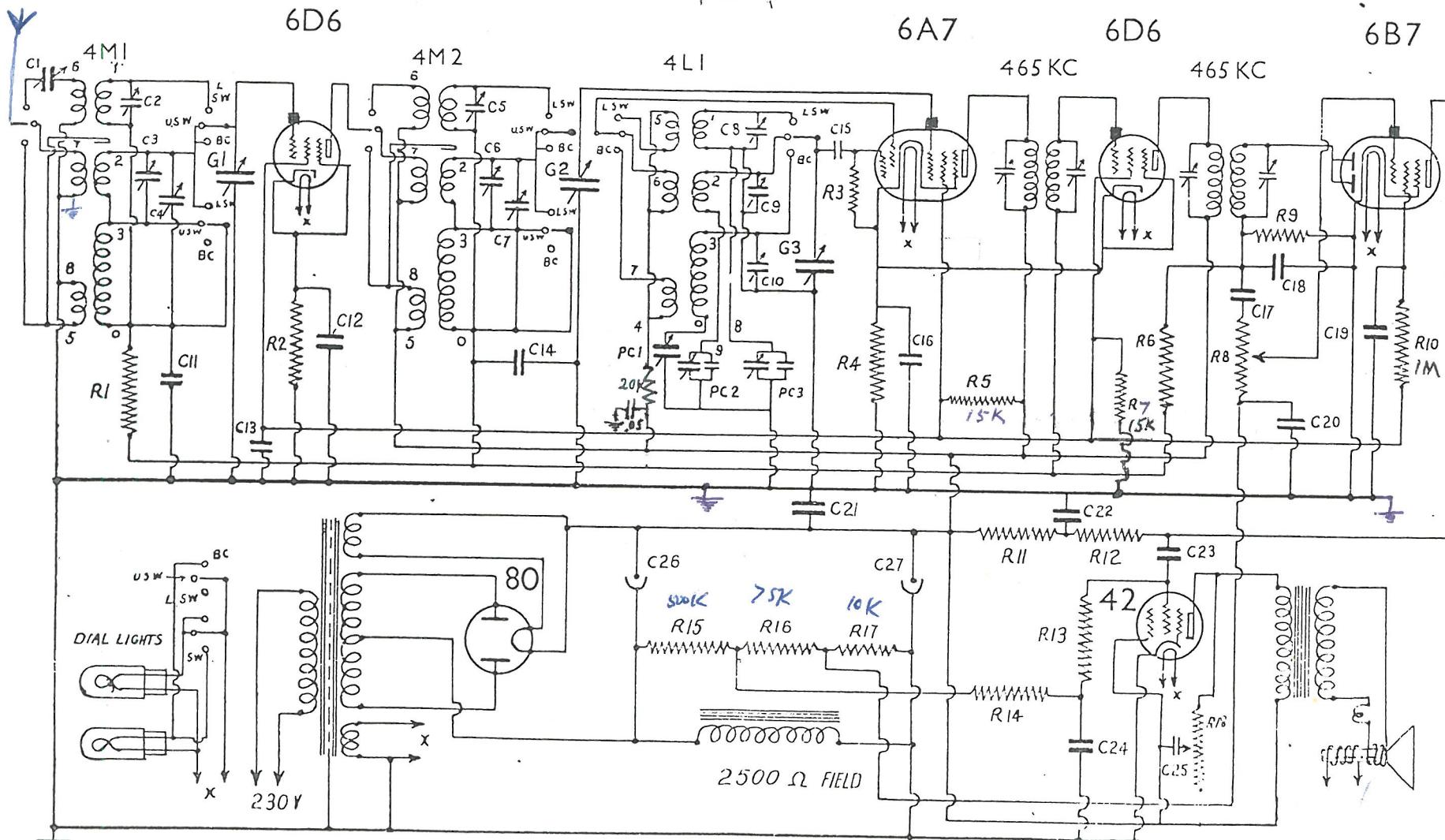
Actually, such a condition is desirable, as it permits of the greatest amount of useful reaction to be obtained under normal receiving conditions.

TYPE 6 A.W. RECEIVER

Location of Trimming & Padding Condensers.

C3	C 3	L.F.	S.W.	Antennae	Stage Trimmer.
C1	C 1	H.F.	S.W.	Antennae	Coupling Condens
C2	C 2	H.F.	S.W.	Antennae	Stage Trimmer.
C4	C 4	B/C	Band	Antennae	Stage Trimmer.
C6	C 6	L.F.	S.W.	Interstage	Trimmer.
C5	C 5	H.F.	S.W.	Interstage	Trimmer.
C7	C 7	B/C	Band	Interstage	Trimmer.
C8	C 8	H.F.	S.W.	Oscillator	Trimmer.
C10	C 10	B/C	Band	Oscillator	Trimmer.
C9	C 9	L.F.	S.W.	Oscillator	Trimmer.
PC2	PC 2	L.F.	S.W.	Padding	Condenser.
PC3	PC 3	H.F.	S.W.	Padding	Condenser.
PC1	PC 1	B/C	Band	Padding	Condenser.

TYPE "6A7" RECEIVER - CONDENSER
CAPACITIES.


C.1)
C.2)
C.3)
C.4)
C.5) 30 to 50 Mmf. Trimmers
C.6)
C.7)
C.8)
C.9)
C.10)
G.1)
G.2) 3-gang Condenser, .00045 Mfd.
G.3)
P.C.1 .0005 Mfd. approx., Broadcast frequency Padding Condenser
P.C.2 .002 Mfd. approx., Low Frequency short wave Padding
Condenser.
P.C.3 .005 Mfd. approx., High frequency short wave Padding
Condenser.
C.11 .05 Mfd. A.V.C. Filter
C.12 .1 Mfd. R.F. Bias By-Pass
C.13 .25 Mfd. Screen By-Pass
C.14 .05 Mfd. A.V.C. Filter
C.15 .00025 Mfd. Oscillator Grid Condenser
C.16 .25 Mfd. 1st Detector and I.F. By-Pass
C.17 .01 Mfd. Audio Coupling Condenser
C.18 .0001 Mfd. Diode Load By-Pass
C.19 .1 Mfd. 6B7 Screen By-Pass.
C.20 25 Mfd. 6B7 Bias Filter
C.21 .25 Mfd. High tension By-Pass
C.22 .25 Mfd. Audio Plate Filter
C.23 .01 Mfd. Audio Coupling Condenser
C.24 .1 Mfd. Audio Grid filter
C.25 .05 Mfd. Tone Control
C.26 8 Mfd. Electrolytic Condenser, insulated.
C.27 8 Mfd. Electrolytic Condenser, earthed.

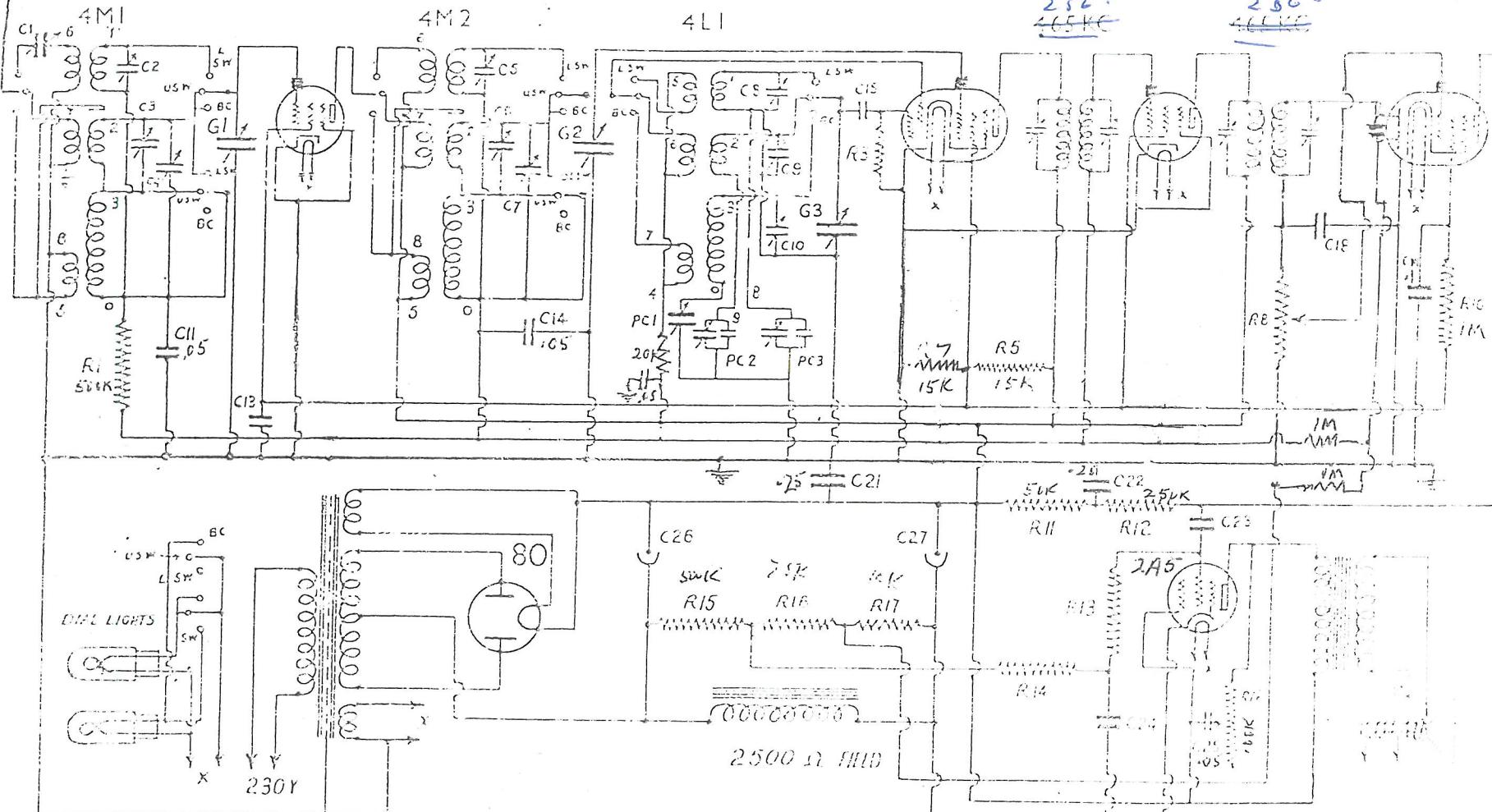
R.1 .5 Megohm A.V.C. Filter
R.2 600 Ohm. R.F. Bias
R.3 75,000 Ohm. Oscillator Grid leak
R.4 150 Ohm. 1st Detector and I.F. Bias
R.5 15,000 Ohm. Screen Dropping
R.6 1 Megohm A.V.C. Filter
R.7 15,000 Ohm. Screen bleeder
R.8 500,000 Ohm. Volume Control
R.9 .5 Megohm Diode Load Resistance
R.10 1 Megohm 6B7 Screen dropping
R.11 .1 Megohm 6B7 Audio Plate Filter
R.12 .25 Megohm 6B7 Plate load
R.13 1 Megohm Grid leak
R.14 .5 Megohm Audio Grid filter
R.15 .5 Megohm
R.16 75,000 Watt } Bias Potentiometer.
R.17 10,000 Ohm.
R.18 100,000 Tone Control

6AW RECEIVER July 1935
"New Series" uses 6.3-volt valves.

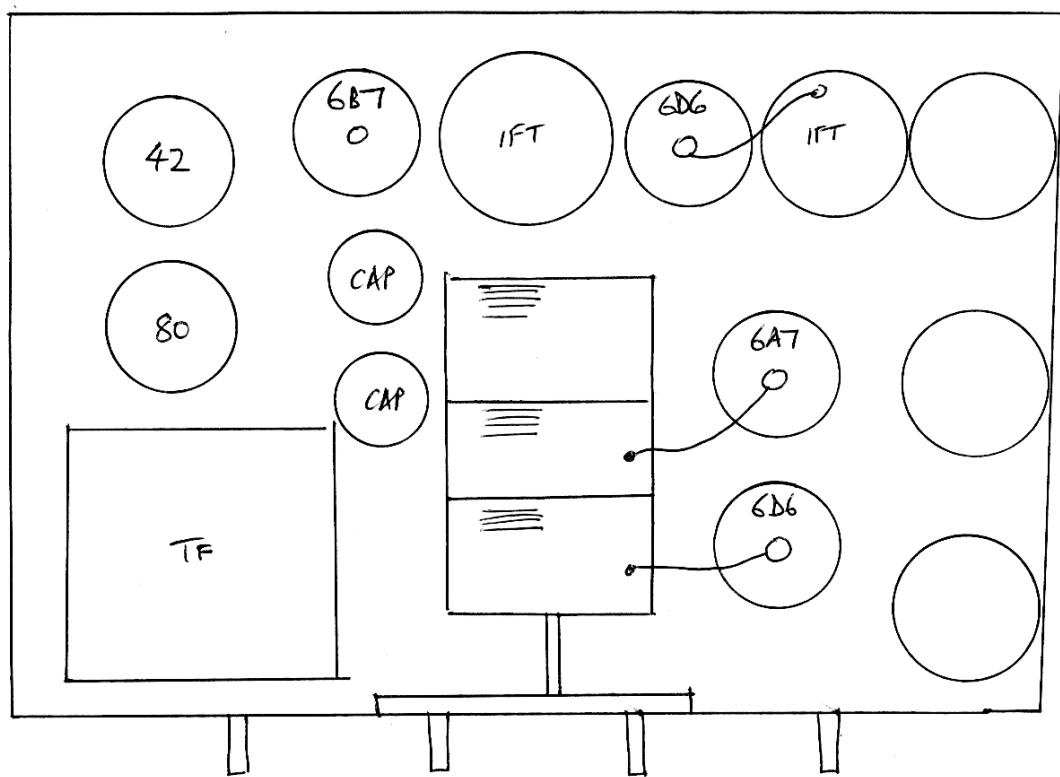
6AW RECEIVER S/N 5037
Early model, 2.5-volt version (5-tubes)

58

4M2


411

2A7


252
~~465 K6~~

٥٦

2B7

STATE 6AW - TOP VIEW OF CHASSIS

~~SELECTIVITY:-~~ As is usual, it is more difficult to obtain what is generally known as sharp tuning in a high intermediate frequency transformer.

TECHNICAL DATA

~~In this particular receiver we have decided on a design that provides a good combination of sensitivity, and selectivity, and at the same time does not entail too great a loss of good fidelity.~~

This Receiver uses six Tubes in a modern Superheterodyne Circuit.

Tubes used are :-

~~ALIMENTATION~~
Following is a list of the tubes used:-
1 - Type 6D6 R.F. Amplifier
1 - " 6A7 Oscillator and 1st Detector
1 - " 6D6 I.F. Amplifier
1 - " 6B7 Diode Detector and Audio Amplifier
1 - " 42 Power Amplifier
1 - " 80 Power Supply Rectifier

SENSITIVITY:- A tuned radio frequency stage is used on all three bands, providing maximum useful sensitivity under almost any conditions of aerial effectiveness. The intermediate frequency used is 465 Kilocycles.

This high intermediate frequency permits definitely one spot tuning on short wave signals, even with carriers of abnormal intensity. Greater sensitivity than has previously been possible is now available on the short wave ranges, by the introduction of controlled reaction in the radio frequency stage.

This controlled reaction condition is obtained by utilising a small common coupling inductance between the R.F. and interstage Coils, made up in the form of a length of the Chassis. Under certain conditions it may be found that with the aerial disconnected, oscillation may take place on the upper part of the short wave band. This is generally caused by particularly good Tubes, and in no way should it interfere with the satisfactory operation of the Receiver, when connected to an out-door aerial.

Actually, such a condition is desirable, as it permits of the greatest amount of useful reaction to be obtained under normal receiving conditions.

SELECTIVITY:- As is usual, it is more difficult to obtain what is generally known as sharp tuning from high intermediate frequency transformers.

In this particular Receiver, we have decided on a design that provides a satisfactory band width without too great a loss of sensitivity, and further, which permits of good fidelity.

The overall characteristic of the 2 I.F. Transformers does not produce a resonance curve with a very sharp peak, but with a distinct flat top, which is generally called for in modern high fidelity Receivers.

ALIGNMENT:- For purposes of alignment, if required in service, the following procedure should be adopted. The intermediate frequency amplifier should be aligned in the usual way - the peaking of all screws at the test frequency, namely 465 K.C. The dial pointer should always be set at 1500 K.C. with the condenser plates in the fully open position. The broadcast section should, in all cases, be treated first. First adjustment should be at 1400 K.C. Condensers, C.4., C.7., and C.10 are the broadcast frequency condensers, C.10 being the Oscillator Trimming Condenser.

After alignment is completed at 1400 K.C., the Padding Condenser - P.C.1 - should be adjusted for maximum signals at 600 K.C. The most satisfactory way of doing this is to tune the Receiver to a point near 600 K.C., without receiving a carrier wave, and adjust the Padding Condenser until back-ground noises are at a maximum. If the Padding Condenser has been moved a fair amount in this operation, it is desirable to recheck the high frequency adjustment of the Oscillator Circuit.

Rarely is it found necessary to make adjustments to the high frequency Trimming Condensers, but generally it is found that adjustments to the Padding Condensers are necessary, more particularly when the Receiver has just been unpacked, or when it has been subjected to extremes in temperature.

The Broadcast Frequency Padding Condenser, which is found on the top right hand corner of the Chassis on this particular Receiver, is of such a comparatively small capacity that any fair vibration or temperature change, as stated above, can produce a very large capacity change, with consequent misalignment of the low frequency end of the Receiver.

SHORT WAVE ADJUSTMENTS:- The low frequency short wave band should be treated first. A high frequency test signal of approximately 6 Megacycles should be used, and Condensers C.3, C.6 and C.9 adjusted for maximum response. C.9 is the Oscillator Trimming Condenser.

The Padding Condenser, P.C.2, should be adjusted at or about 2.5 Megacycles, preferably using Receiver noises for locating the correct position.

H.F. S.W. band adjustments, should be carried out in a like manner, using C.2, C.5 and C.8 as the high frequency alignment screws - C.8 being the Oscillator Trimmer. A test frequency of 15 Megacycles should be used. The Padding Condenser P.C.3 should be aligned at 6 Megacycles.

Rarely will it be found necessary to alter the adjustment of these Condensers, and if the Receiver is functioning satisfactorily, adjustments should not be attempted.

Circuit and Component details are shown on separate sheets.

COLLIER & BEALE LIMITED,
66 GHUZNEE STREET,
WELLINGTON, C.2.
8th July, 1935.